Date:

6 October 2000

To:

Bechtel Hanford, Inc. (technical representative).

From:

TechLaw, Inc.

Project:

100-H Areas - Full Protocol - Waste Site 100-H-17

Subject: Radiochemistry - Data Package No. H0924-TR (SDG No. H0924)

INTRODUCTION

This memo presents the results of data validation on Summary Data Package No. H0924-TR which was prepared by ThermoRetec (TR). A list of samples validated along with the analyses reported and the requested analytes is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analysis
BOYR43	7/20/00	Soil	С	See note 1
BOYR44	7/20/00	Soil	С	See note 1
BOYR45	7/20/00	Soil	, c	See note 1
BOYR46	7/20/00	Soil	С	See note 1
BOYR47	7/20/00	Soil	С	See note 1
BOYR48	7/20/00	Soil	С	See note 1
BOYR49	7/20/00	Soil	С	See note 1
BOYR50	7/20/00	Soil	С	See note 1
BOYR51	7/20/00	Soil	С	See note 1
BOYR53	7/20/00	Soil	С	See note 1

^{1 -} Gamma spectroscopy; alpha spectroscopy (isotopic plutonium); total strontium.

Data validation was conducted in accordance with the BHI validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL May 1998). Appendices 1 through 5 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

Holding Times

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for radiochemical analysis is 6 months.

All holding times were acceptable.

Blanks

Laboratory Blanks

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination. If blank analysis results indicate the presence of an analyte above the MDA, the following qualifiers are applied: All positive sample results less than five times the highest blank concentration are qualified as estimates and flagged "J"; sample results below the MDA are qualified as undetected and flagged "U"; sample results above the MDA and greater than five times the highest blank concentration are not qualified.

All other blank results were acceptable.

Equipment Blank

One equipment blank (BOYR53) was submitted for analysis. Uranium-233, uranium-238(aspec), potassium-40, radium-226, radium-228, thorium-228 and thorium-232 were detected in the equipment blank. Under the BHI statement of work, no qualification is required.

Accuracy

Accuracy is evaluated by analyzing distilled water or field samples spiked with known amounts of radionuclides. The sample activity as determined by analysis is compared to the known activity to assess accuracy. The acceptable laboratory control sample and matrix spike recovery range is either 70-130% or ±3 sigma. In addition, samples may be spiked with a radiochemical tracer to assist in isolating the radioisotope of interest with the yield of the tracer being used in calculating sample activity. The acceptable range for tracer recovery is 20% to 105%. Spike sample results outside the above ranges result in associated sample results being qualified as estimates, rejected, or not qualified, depending on the activity of the individual sample.

000002

Due to a radiochemical yield of 108%, the detected isotopic uranium results in sample BOYR46 were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

Precision

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. Precision may also be assessed using unspiked duplicate sample analyses. If both sample and replicate activities are greater than five times the CRDL and the RPD is less than 30 percent, the results are acceptable. If either activities are less then five times the CRDL, a control limit of less than or equal to two times the CRDL is used for soil samples and less than or equal to the CRDL for water samples. If either the original or replicate value is below the CRDL, the applicable control limits are less than or equal to the CRDL for water samples and less than or equal to two times the CRDL for soil samples. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

All duplicate results were acceptable.

Field Duplicates

One set of field duplicates (BOYR46/BOYR51) were submitted for analysis. The results were compared using the same criteria as for a laboratory duplicate. All field duplicate results were acceptable.

Detection Levels

Reported analytical detection levels for undetected analytes are compared against the 100 Area Remedial Action Sampling and Analysis Plan target detection limits (TDLs) or the contract specified MDA if no TDL was specified, to ensure that laboratory detection levels meet the required criteria. The following analytes were reported above their TDL: Uranium-238(gea) in all samples; uranium-235(aspec) in all samples; americium-241(gea) in all samples except BOYR45 and BOYR53; europium-155 in all samples except BOYR53; uranium-235(gea) in samples BOYR43, BOYR44, BOYR45, BOYR46, BOYR47, BOYR48, BOYR50 and BOYR51; europium-154 in samples BOYR44, BOYR45, BOYR46, BOYR47, BOYR48 and BOYR51; europium-152 in samples BOYR47 and BOYR48; cobalt-60 in samples BOYR45 and BOYR47; uranium-238(aspec) and uranium-233(aspec) in sample BOYR51; plutonium-238 and plutonium-239/240 in samples BOYR43 and BOYR51; cesium-137 in samples BOYR47 and BOYR51. Under the BHI statement of work, no qualification is required. All other reported

0000C3

laboratory MDAs were at or below the analyte-specific TDL or contract specified MDA.

Completeness

Data Package No. H0924 (SDG No. H0924) was submitted for validation and verified for completeness. The completion rate was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

Due to a radiochemical yield of 108%, the detected isotopic uranium results in sample BOYR46 were qualified as estimates and flagged "J". Data flagged "J" is an estimate, but under the BHI validation SOW, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

The following analytes were reported above their TDL: Uranium-238(gea) in all samples; uranium-235(aspec) in all samples; americium-241(gea) in all samples except BOYR45 and BOYR53; europium-155 in all samples except BOYR53; uranium-235(gea) in samples BOYR43, BOYR44, BOYR45, BOYR46, BOYR47, BOYR48, BOYR50 and BOYR51; europium-154 in samples BOYR44, BOYR45, BOYR46, BOYR47, BOYR48 and BOYR51; europium-152 in samples BOYR47 and BOYR48; cobalt-60 in samples BOYR45 and BOYR47; uranium-238(aspec) and uranium-233(aspec) in sample BOYR51; plutonium-238 and plutonium-239/240 in samples BOYR43 and BOYR51; cesium-137 in samples BOYR47 and BOYR51. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, *Validation Statement of Work*, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 1, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, May 1998.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI statement of work are as follows:

- Indicates the compound or analyte was analyzed for and not detected above the minimum detectable activity (MDA) in the sample. The value reported is the sample result corrected for sample dilution and moisture content by the laboratory. The data is usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected at concentrations above the minimum detectable activity (MDA) in the sample. Due to a QC deficiency identified during the data validation, the associated quantitation limit is an estimate, but is usable for decision making purposes.
- Indicates the compound or analyte was analyzed for and detected. Due to a QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified QC deficiency.

Appendix 2
Summary of Data Qualification

DATA QUALIFICATION SUMMARY

SDG: H0924	REVIEWER: TLI	DATE: 10/6/00	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Uranium-233(aspec) Uranium-238(aspec)	J	BOYR46	Radiochemical yield
·			

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

Č
Ç
_

Project: BECHTEL-HANFORD																					
Laboratory: TR				<u> </u>																	
Case	SDG: H	0924									•										
Sample Number		BOYR43		BOYR44		BOYR45		BOYR46		BOYR47		BOYR48		BOYR49		BOYR50		BOYR51		BOYR53	Т
Location		100-H-17	,	100-H-17	7	100-H-17		100-H-17	7	100-H-17	,	100-H-17	00	-H-1723we	w2	100-H-17		100-H-17	7	100-H-17	\top
Remarks								1										Duplicate		E. Blank	T
Sample Date		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00	_	7/20/00	十
Radiochemistry	CRDL	Result	a	Result	a	Result	a	Result	a	Result	a	Result	a	Result	a	Result	a	Result	a	Result	la
Strontium (total)	1	0.027	U	0.076	U	-0.065	υ	0.028	υ	0.009	υ	1.07		0.217	ľ	0.112	Ē	0.054		-0.045	_
Uranium-233	0.1	0.658		0,626		0.616		0.571	J	0.461	Π	0.398		0.242		0.469		0.570	U	0.311	_
Uranium-235	0.1	0.039	U	0.058	υ	0.039	U	0	U	0.096	U	0	u	0.020	U	0.023	v	0.115	U	0,019	
Uranium-238	0.1	0.626		0.842		0.470		0.710	J	0.477	<u> </u>	0.541	П	0.403		0.563		0.570	_	0.280	-
Plutonium-238	0.1	-0.051	U	0.003	U	0	U	-0.024	U	-0.003	U	0.043	U	0.021	U	0.019	U	0.042	Ų		οlυ
Plutonium-239/40	0.1	-0.040	U	-0.008	U	-0.014	υ	0.008	U	0.010	v	0	U	0.017	v	0.013	v	0.021	U	-0.017	, lu
Potassium 40		14.9		12.1		12.2		14.3	Г	11.7	Г	14.2		15.0		14.3	Г	15.4	Г	4.84	-
Cobalt 60	0,05	U	U	U	υ	. U	υ	U	υ	U	U	U	υ	U	U	U	U	U	υ		υ
Cesium 137	0.05	0.032	U	0.104		U	U	0.072		U	U	0.526		0.100		0.054		U	υ	U	U
Radium-226		0.579		0.521		0.514		0.511		0.487	L	0.552		0.553		0.597	Г	0.508		0.170	,
Radium-228		0.771		0,844		0.823		0.863		0.673		0.741		0.730		0.873		0,839	П	0.178	,
Europium 152	0.1	Ü	Ü	υ	υ	U	Ü	U	U	U	υ	U	۲	U	U	U	U	U	U	u	ıυ
Europium 154	0.1	Ü	U	U	υ	U	U	U	U	U	U	U	Ü	U	ŭ	υ	U	Ü	U	U	ıυ
Europium 155	0.05	U	U	U	Ü	U	U	Ų	U	U	υ	U	υ	U	ñ	υ	U	U	U	U	υ
Thorium-228		0.655		0.650		0.712		0.677		0.685		0.757		0.677		0.728		0.681		0.174	
Thorium-232		0.771		0.644		0.823		0.863		0.673		0.741		0.730		0.873		0.839		0.178	·
Uranium-235 (GEA)	0.1	U	U	U	υ	Ü	U	U	U	U	U	υ	Ų	U	υ	U	U	U	U	U	U
Uranium-238 (GEA)	0.1	U	U	Ü	U	U	U	U	Ų	U	U	Ú	Ų	U	υ	U	U	U	U	<u> </u>	U
Americkum-241 (GEA)	0.1	U	U	U	U	U	υ	U	U	U	U	Ū	Ų	U	υ	U	U	U	U	ū	U
				*					L		<u> </u>		_		<u> </u>		<u>L</u>				
																			$oldsymbol{ol}}}}}}}}}}}}}}}}}$		
					_				_			ļ	_		L				$ldsymbol{ol}}}}}}}}}}}}$	<u> </u>	丄
					$oldsymbol{ol}}}}}}}}}}}}}}}}}$				匚		$ldsymbol{ld}}}}}}$		L				<u> </u>		L	<u> </u>	
								<u> </u>		<u> </u>							$ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}$		L_	1	

R007125-01

DATA SHEET

BOYR43

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG H0924
Lab sample id Dept sample id Received		Client sample id Location/Matrix Collected		SOLID
* solids	98.9	Custody/SAF No	B99-042-043 B99-0	42_

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	Test
Total Strontium	SR-RAD	0.027	0.12	0.17	1.0	ט	SR
Uranium 233	U-233/234	0.658	0.20	0.12	1.0	J	U
Uranium 235	15117-96-1	0.039	0.039	0.15	1.0	Ū	Ū
Uranium 238	U-238	0.626	0.20	0.12	1.0	J	Ū
Plutonium 238	13981-16-3	-0.051	0.10	0.20	1.0	U	PU
Plutonium 239/240	PU-239/240	-0.040	0.061	0.15	1.0	υĆ	PU
Potassium 40	13966-00-2	14.9	0.76	0.38			GAM
Cobalt 60	10198-40-0	U		0.033	0.050	U	MAD
Cesium 137	10045-97-3	0.032	0.027	0.035	0.10	ប	GAM
Radium 226	13982-63-3	0.579	0.077	0.071	0.10		GAM
Radium 228	15262-20-1	0.771	0.16	0.15	0.20		GAM
Europium 152	14683-23-9	บ		0.079	0.10	ប	GAM
Europium 154	15585-10-1	ប		0.10	0.10	U	GAM
Europium 155	14391-16-3	ซ		0.11	0.10	ប	GAM
Thorium 228	14274-82-9	0.655	0.043	0.042			GAM
Thorium 232	TH-232	0.771	0.16	0.15			GAM
Uranium 235	15117-96-1	ซ		0.14		ប	GAM
Uranium 238	U-238	υ		4.3		ប	GAM
Americium 241	14596-10-2	ซ		0.26		U	GAM

100 H AREA - FULL PROTOCOL

10/2/00

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 15

R007125-02

DATA SHEET

BOYR44

L	7445 Melissa C. Mannion	·	Hanford TRC-SBB-207925	SDG_H0924
Lab sample id Dept sample id Received % solids	7445-002 07/25/00	Client sample id Location/Matrix Collected Custody/SAF No	100-H-17 07/20/00 08:40	SOLID 042

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.076	0.082	0.13	1.0	U	SR
Uranium 233	U-233/234	0.626	0.20	0.12	1.0	J	ซ
Uranium 235	15117-96-1	0.058	0.078	0.15	1.0	ប	U
Uranium 238	บ-238	0.642	0.20	0.12	1.0	J	ט
Plutonium 238	13981-16-3	0.003	0.023	0.047	1.0	U	PU
Plutonium 239/240	PU-239/240	-0.006	0.017	0.044	1.0	Ū	PU
Potassium 40	13966-00-2	12.1	0.92	0.55		_	GAM
Cobalt 60	10198-40-0	ប		0.047	0.050	U	GAM
Cesium 137	10045-97-3	0.104	0.030	0.035	0.10	_	GAM
Radium 226	13982-63-3	0.521	0.076	0.074	0.10		GAM
Radium 228	15262-20-1	0.644	0.19	0.20	0.20		GAM
Europium 152	14683-23-9	บ		0.10	0.10	บ	GAM
Europium 154	15585-10-1	บ		0.15	0.10	Ū	GAM
Europium 155	14391-16-3	ซ		0.11	0.10	U	GAM
Thorium 228	14274-82-9	0.650	0.051	0.051	3123	_	GAM
Thorium 232	TH-232	0.644	0.19	0.20			GAM
Uranium 235	15117-96-1	บ		0.17		U	GAM
Uranium 238	บ-238	Ü		5.4		Ü	GAM
Americium 241	14596-10-2	บั		0.16		. ប	GAM

100 H AREA - FULL PROTOCOL

per 10/2/00

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 16

R007125-03

DATA SHEET

BOYR45

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG H0924
Lab sample id Dept sample id Received * solids	7445-003 07/25/00	Client sample id Location/Matrix Collected Custody/SAF No	100-H-17 07/20/00 08:55	SOLID -042

ANALYTE	CAS NO	RESULT pCi/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	-0.065	0.12	0.21	1.0	ט	SR
Uranium 233	U-233/234	0.616	0.20	0.12	1.0	J	U
Uranium 235	15117-96-1	0.039	0.039	0.15	1.0	บ	ט
Uranium 238	U-238	0.470	0.17	0.12	1.0	J	Ū
Plutonium 238	13981-16-3	0	0.028	0.061	1.0	Ü	PU
Plutonium 239/240	PU-239/240	-0.014	0.021	0.056	1.0	ט	PU
Potassium 40	13966-00-2	12.2	0.92	0.61		_	GAM
Cobalt 60	10198-40-0	U		0.058	0.050	U	GAM
Cesium 137	10045-97-3	ט		0.043	0.10	บ	GAM
Radium 226	13982-63-3	0.514	0.090	0.087	0.10	-	GAM
Radium 228	15262-20-1	0.823	0.23	0.20	0.20		GAM
Europium 152	14683-23-9	U		0.098	0.10	บ	GAM
Europium 154	15585-10-1	บ		0.18	0.10	Ū	GAM
Buropium 155	14391-16-3	ប		0.083	0.10	U	GAM
Thorium 228	14274-82-9	0.712	0.070	0.069	0.20	•	GAM
Thorium 232	TH-232	0.823	0.23	0.20			GAM
Uranium 235	15117-96-1	บ		0.13		U	GAM
Uranium 238	U-238	Ū		5.8		Ü	GAM
Americium 241	14596-10-2	Ū		0.053		บ	GAM

100 H AREA - FULL PROTOCOL

polizion

DATA SHEETS
Page 3
SUMMARY DATA SECTION
Page 17

R007125-04

DATA SHEET

BOYR46

· ·	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG_H0924
4		Client sample id Location/Matrix Collected Custody/SAF No	100-H-17 07/20/00 09:23	SOLID 042

ANALYTE	CAS NO	RESULT PC1/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.028	0.13	0.17	1.0	ַ ט	SR
Uranium 233	U-233/234	0.571	0.17	0.11	1.0	d I	U
Uranium 235	15117-96-1	0	0.034	0.13	1.0	U	บ
Uranium 238	U-238	0.710	0.20	0.11	1.0	NJ	Ū
Plutonium 238	13981-16-3	-0.024	0.041	0.085	1.0	ט	PU
Plutonium 239/240	PU-239/240	0.008	0.024	0.050	1.0	U	PÜ
Potassium 40	13966-00-2	14.3	0.80	0.37			GAM
Cobalt 60	10198-40-0	ט		0.043	0.050	ד	GAM
Cesium 137	10045-97-3	0.072	0.039	0.042	0.10	34	GAM
Radium 226	13982-63-3	0.511	0.064	0.059	0.10		GAM
Radium 228	15262-20-1	0.863	0.15	0.14	0.20		GAM
Europium 152	14683-23-9	ซ		0.087	0.10	U	GAM
Europium 154	15585-10-1	σ		0.13	0.10	Ū	GAM
Europium 155	14391-16-3	ซ		0.13	0.10	Ü	GAM
Thorium 228	14274-82-9	0.677	0.045	0.044		•	GAM
Thorium 232	TH-232	0.863	0.15	0.14			GAM
Uranium 235	15117-96-1	ט		0.15		U	GAM
Uranium 238	T-238	ซ		4.8		บ	GAM
Americium 241	14596-10-2	Ü		0.28		บ	GAM

100 H AREA - FULL PROTOCOL

per 10/2/00

Page 4
SUMMARY DATA SECTION
Page 18

R007125-05

DATA SHEET

BOYR47

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG H0924
Lab sample id Dept sample id Received % solids	7445-005 07/25/00			SOLID 042

ANALYTE	CAS NO	RESULT pCi/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.009	0.11	0.16	1.0	U	SR
Uranium 233	U-233/234	0.461	0.19	0.12	1.0	J	ซ
Uranium 235	15117-96-1	0.096	0.077	0.15	1.0	ប	U
Uranium 238	U-238	0.477	0.19	0.12	1.0	J	Ū
Plutonium 238	13981-16-3	-0.003	0.028	0.056	1.0	ប	₽Ū
Plutonium 239/240	PU-239/240	0.010	0.021	0.033	1.0	บ	PU
Potassium 40	13966-00-2	11.7	1.0	0.65			GAM
Cobalt 60	10198-40-0	บ		0.057	0.050	ט	GAM
Cesium 137	10045-97-3	U		0.072	0.10	ប	GAM
Radium 226	13982-63-3	0.487	0.094	0.094	0.10		GAM
Radium 228	15262-20-1	0.673	0.21	0.24	0.20		GAM
Europium 152	14683-23-9	ប		0.12	0.10	U	GAM
Europium 154	15585-10-1	Ū		0.17	0.10	ប	GAM
Europium 155	14391-16-3	ש		0.12	0.10	U	GAM
Thorium 228	14274-82-9	0.685	0.059	0.060			GAM
Thorium 232	TH-232	0.673	0.21	0.24			GAM
Uranium 235	15117-96-1	ט		0.19		U	GAM
Uranium 238	U-238	ט		5.9		U	GAM
Americium 241	14596-10-2	ซ		0.18		σ	GAM

100 H AREA - FULL PROTOCOL

polizion

DATA SHEETS
Page 5
SUMMARY DATA SECTION
Page 19

R007125-06

DATA SHEET

BOYR48

7445 Melissa C. Mannion	•	Hanford STRC-SBB-207925	DG_H0924
			SOLID

ANALYTE	CAS NO	result pci/g	20 ERR (COUNT)	MDA pci/g	PC1/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	1.07	0.17	0.17	1.0		SR
Uranium 233	บี-233/234	0.398	0.16	0.12	1.0	J	U
Uranium 235	15117-96-1	0	0.039	0.15	1.0	ប	σ
Uranium 238	U-238	0.541	0.20	0.12	1.0	J	U
Plutonium 238	13981-16-3	0.043	0.034	0.053	1.0	U	PU
Plutonium 239/240	PU-239/240	0	0.034	0.069	1.0	ט	PU
Potassium 40	13966-00-2	14.2	0.83	0.40			GAM
Cobalt 60	10198-40-0	ซ		0.046	0.050	U	GAM
Cesium 137	10045-97-3	0.526	0.049	0.044	0.10		GAM
Radium 226	13982-63-3	0.552	0.077	0.073	0.10		GAM
Radium 228	15262-20-1	0.741	0.18	0.19	0.20		GAM
Europium 152	14683-23-9	U		0.15	0.10	ט	GAM
Europium 154	15585-10-1	Ū		0.14	0.10	U	GAM
Buropium 155	14391-16-3	ט		0.14	0.10	ช	GAM
Thorium 228	14274-82-9	0.757	0.054	0.054			GAM
Thorium 232	TH-232	0.741	0.18	0.19			MAĐ
Uranium 235	15117-96-1	U		0.18		U	GAM
Uranium 238	U-238	U		5.2		U	GAM
Americium 241	14596-10-2	U		0.32		U	GAM

100 H AREA - FULL PROTOCOL

pur

DATA SHEETS
Page 6
SUMMARY DATA SECTION
Page 20

R007125-07

DATA SHEET

BOYR49

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG H0924
Lab sample id	R007125-07	Client sample id	BOYR49	
Dept sample id	7445-007	Location/Matrix	100-H-17	SOLID
Received	07/25/00	Collected	07/20/00 09:47	
t solids	98.9	Custody/SAF No	B99-042-045 B99-	042

AHALYTE	CAS NO	RESULT pCi/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.217	0.096	0.12	1.0	J	SR
Uranium 233	บ-233/234	0.242	0.13	0.12	1.0	J	U
Uranium 235	15117-96-1	0.020	0.039	0.15	1.0	ט	U
Uranium 238	U-238	0.403	0.16	0.12	1.0	J	U
Plutonium 238	13981-16-3	0.021	0.034	0.056	1.0	U	PU
Plutonium 239/240	PU-239/240	0.017	0.034	0.056	1.0	י	PU
Potassium 40	13966-00-2	15.0	0.53	0.22			GAM
Cobalt 60	10198-40-0	U		0.024	0.050	U	GAM
Cesium 137	10045-97-3	0.100	0.018	0.022	0.10		GAM
Radium 226	1,3982-63-3	0.553	0,049	0.046	0.10		GAM
Radium 228	15262-20-1	0.730	0.10	0.10	0.20		GAM
Europium 152	14683-23-9	σ		0.057	0.10	ប	GAM
Europium 154	15585-10-1	บ		0.079	0.10	บ	GAM
Europium 155	14391-16-3	ซ		0.081	0.10	ซ	GAM
Thorium 228	14274-82-9	0.677	0.032	0.031			GAM
Thorium 232	TH-232	0.730	0.10	0.10			GAM
Uranium 235	15117-96-1	ט		0.10		ប	GAM
Uranium 238	U-238	ט		3.0		ซ	GAM
Americium 241	14596-10-2	ט		0.18		ប	GAM

100 H ARRA - FULL PROTOCOL

pulla

DATA SHEETS
Page 7
SUMMARY DATA SECTION
Page 21

R007125-08

DATA SHEET

BOYR50

B	7445 Melissa C. Mannion	Client/Case no Contract	Hanford SD TRC-SBB-207925	G_H0924
Lab sample id	R007125-08	Client sample id	BOYR50	
Dept sample id	7445-008	Location/Matrix	100-H-17	SOLID
Received	07/25/00	Collected	07/20/00 09:30	
* solids	99.1	Custody/SAF No	B99-042-045 B99-042	<u> </u>

ARALYTE	CAS NO	RESULT pCi/g	20 ERR (COUNT)	MDA pCi/g	RDL pC1/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.112	0.081	0.11	1.0	J	SR
Uranium 233	U-233/234	0.469	0.19	0.14	1.0	J	U
Uranium 235	15117-96-1	0.023	0.045	0.17	1.0	Ū	U
Uranium 238	U-238	0.563	0.19	0.14	1.0	J	U
Plutonium 238	13981-16-3	0.019	0.032	0.057	1.0	U	PU
Plutonium 239/240	PU-239/240	0.013	0.019	0.035	1.0	U	PU
Potassium 40	13966-00-2	14.3	0.73	0.36			GAM
Cobalt 60	10198-40-0	ซ		0.036	0.050	U	GAM
Cesium 137	10045-97-3	0.054	0.029	0.032	0.10	J	GAM
Radium 226	13982-63-3	0.597	0.064	0.059	0.10		GAM
Radium 228	15262-20-1	0.873	0.14	0.13	0.20		GAM
Europium 152	14683-23-9	ซ		0.081	0.10	ס	GAM
Europium 154	15585-10-1	U		0.10	0.10	ט	GAM
Europium 155	14391-16-3	ช		0.11	0.10	ש	GAM
Thorium 228	14274-82-9	0.728	0.040	0.039			GAM
Thorium 232	TH-232	0.873	0.14	0.13			GAM
Uranium 235	15117-96-1	บ		0.14		σ	GAM
Uranium 238	U-238	บ		4.2		บ	GAM
Americium 241	14596-10-2	ซ		0.26		Ū	GAM

100 H AREA - FULL PROTOCOL

pol 2/00

DATA SHEETS
Page 8
SUMMARY DATA SECTION
Page 22

R007125-09

DATA SHEET

BOYR51

7445 Melissa C. Mannion	-	Hanford SI TRC-SBB-207925	G_H0924
			SOLID

analite	CAS NO	RESULT pCi/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	0.054	0.42	0.74	1.0	ט	SR
Uranium 233	U-233/234	0.570	0.57	0.91	1.0	บ	Ū
Uranium 235	15117-96-1	0.115	0.46	0.88	1.0	ט	U
Uranium 238	U-238	0.570	0.57	0.73	1.0	U	U
Plutonium 238	13981-16-3	0.042	0.17	0.32	1.0	U	PU
Plutonium 239/240	PU-239/240	0.021	0.12	0.26	1.0	ט	PU
Potassium 40	13966-00-2	15.4	0.88	0.31			GAM
Cobalt 60	10198-40-0	Ū		0.045	0.050	ט	GAM
Cesium 137	10045-97-3	ប		0.055	0.10	U	GAM
Radium 226	13982-63-3	0.508	0.074	0.068	0.10		GAM
Radium 228	15262-20-1	0.839	0.18	0.17	0.20		GAM
Europium 152	14683-23-9	υ		0.098	0.10	ט	GAM
Buropium 154	15585-10-1	บ		0.16	0.10	บ	MAĐ
Buropium 155	14391-16-3	ប		0.14	0.10	υ	GAM
Thorium 228	14274-B2-9	0.681	0.051	0.050			GAM
Thorium 232	TH-232	0.839	0.18	0.17			GAM
Uranium 235	15117-96-1	บ		0.17		ប	GAM
Uranium 238	U-238	ซ		5.0		U	GAM
Americium 241	14596-10-2	σ		0.31		ט	GAM

100 H AREA - FULL PROTOCOL

ne 10/2/00

DATA SHEETS
Page 9
SUMMARY DATA SECTION
Page 23

R007125-10

DATA SHEET

BOYR53

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG_H0924
Lab sample id		Client sample id		COLTD
Dept sample id Received	07/25/00	Location/Matrix Collected	07/20/00 08:27	SOLID
t solids	100.0	Custody/SAF No	B99-042-045 B99-0	142

ANALYTE	CAS NO	RESULT pci/g	20 ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	-0.045	0.10	0.15	1.0	U	SR
Uranium 233	U-233/234	0.311	0.16	0.12	1.0	J	U
Uranium 235	15117-96-1	0.019	0.038	0.14	1.0	ט	U
Uranium 238	U-238	0.280	0.13	0.12	1.0	J	υ
Plutonium 238	13981-16-3	0	0.035	0.071	1.0	U	PU
Plutonium 239/240	PU-239/240	-0.017	0.023	0.071	1.0	ប	PU
Potassium 40	13966-00-2	4.84	0.26	0.13			GAM
Cobalt 60	10198-40-0	ប		0.014	0.050	บ	GAM
Cesium 137	10045-97-3	<u></u> ד		0.011	0.10	บ	GAM
Radium 226	13982-63-3	0.170	0.025	0.023	0.10		GAM
Radium 228	15262-20-1	0.178	0.049	0.053	0.20	J	GAM
Europium 152	14683-23-9	ד		0.030	0.10	ט	GAM
Buropium 154	15585-10-1	U		0.043	0.10	U	GAM
Europium 155	14391-16-3	U .		0.042	0.10	ט	GAM
Thorium 228	14274-82-9	0.174	0.016	0.017			GAM
Thorium 232	TH-232	0.178	0.049	0.053			GAM
Uranium 235	15117-96-1	บ	-	0.053		U	GAM
Uranium 238	U-238	ซ		1.6		ប	GAM
Americium 241	14596-10-2	ט		0.095		ប	GAM

100 H AREA - FULL PROTOCOL

pe 10/2/00

DATA SHEETS
Page 10
SUMMARY DATA SECTION
Page 24

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Case Narrative

Page 1 of 1

1.0 GENERAL

Bechtel Hanford Inc. (BHI) Sample Delivery Group H0924 was composed of ten solid (soil) samples designated under SAF No. B99-042 with a Project Designation of: 100 H Area – Full Protocol.

The samples were received as stated on the Chain-of-Custody documents. Any discrepancies are noted on the Thermo Retec Sample Receipt Checklist. The results were transmitted to BHI via e-Fax on August 14, 30, and September 5, 2000.

2.0 ANALYSIS NOTES

2.1 Total Strontium Analyses

No problems were encountered during the course of the analyses.

2.2 Isotopic Uranium Analyses

Isotopic Uranium was requested by BHI on August 17, 2000.

No problems were encountered during the course of the analyses.

2.3 Isotopic Plutonium Analyses

Isotopic Plutonium was requested by BHI on August 17, 2000.

No problems were encountered during the course of the analyses.

2.4 Gamma Spectroscopy Analyses

No problems were encountered during the course of the analyses.

LABORATORY SECTION BH-EE-011 (10/90) NOLLISOASSE TADRYS TYNE BOYRSS BOYRS BOYRSO BOYRAG in a second By Special Handling and/or Storage POSSIBLE SAMPLE HAZARDSPEAKARKS THUMBON TIMA CHAIN OF POSSESSION Sx 9 bress 1 5PC99-042 200A Disposed Medical Partial P K NK TO'S √ 80# 801 301 7125/0 **BANAPLE ANALYSIS** Matrix . 00 000 120100 Sign/Triet Names 100 A Office Property No. Meld Lagbook No. EL-1500-2 No. of Cautalner(s) Type of Container Preservation **Volume** Sample Ties 122 NO COMMITTEE FEY 00-02-पिन्धी काम 4 SCODAA Date/Ilea Date/Trace हुत्। इ Ē. f Ş F COA R00H172600 SPECIAL DISTRUCTIONS

| T-L 1 0.1.070 R.

(i) 10 months of the (Separate of Tourist, Caronian; Small; Manual
(i) Grams Specimesopy (Carina-137, Cabab. 68, Europins-132, Europi 1 ħ Disposed By NOOM! Ĭ Method of Shipment Federal Express 2857483 RUN 7/20/00 Date/Time 155]

Matrix .

88

reject Designation 100 H Area - Full Protocol

Rance Nielson

M. Stankovich

Company Contact Mike Stankovich

Telephone No. 531-7620

CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST

Sampling Location 100-H-17

H0924 (7445)

SAF Ne. B99-042

Air Quality

Project Coordinator TRENT, SJ

Price Cade

Data Turnsround 21 Days

Bechtel Hauford Inc.

S Cheek No.

Bechtel Hanfo	rd Inc.	C	HAIN OF CUS	rody/	SAMPL	E ANAL	YSIS	KEQUE	21	.,,,,		<u> </u>	
Callecter Rence Nickon M. 5	tankovich	Com/ Mi	pany Contact ka Stankovich	Teleph 531-	ne No. 1620			Project Co TRENT, SJ	ordinator	Price Code	8L		rasround Theres
Project Designation 100 H Area - Full Protocol			pling Location O-FI-17	Hog	124	7445)	SAF No. 1999-042		Air Quality	<i>'</i> 🗆	<i>Z</i> 1 :	Days
Ice Chest Ne.	99-043 2	OF 7 Plate	Lagbook No. -1500-2		COA ROOH17	2600		Method of S Federal E					
Shipped To TMA/RECRA TM			te Property Na.	೨ ಎ ೮′				BEE of Lad	Z 35	7953	742	3	·
Possible Sample Haza			Preservation	Name	8	8	Nos	•					
Non			Type of Container	16	不	3	P						
			No. of Container(s)	1	N	19	1						
Special Handling and/or Stor	rage .		Velume	Sheet.	N.	50-L	1000	al l					
00024	Sample anal	YSIS		RJN 7 200	Charles Hex - /194	Subba (1) in Special Securiors.	Sae item Speci Sastruci	it i			-		
Sample No.	Matrix *	Sample Date											
BOYR46	SOIL.	11201X		X/	}			4_			 		A4 85
BOYR47	r soil.	1/20/0		X.	} -	<u> </u>	X						B6
80YR46	√ SOIL	17/20/0	0 10945	 			 ^				 		100
					 	 	 		+				
CHAIN OF HOSSESSIO	N	Sign/Pris			SPI	CIAL INSTR	UCTIO	N8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7/20/00	RIN	Matrix *
Reliable AND LA	DeterTime DeterTime DeterTime DeterTime DeterTime DeterTime DeterTime	Received By Received By Received By Received By Received By	1.2000 20 7]	2.4 (v)	7.30_	CIAL INSTR RT Stinute - 60 Games Spectra	14A (Bug moopy (C	157, Co	alt 60, Europ	152, Bergin	0491 (CA) n-154, Europisse Du	i-155]	S-Self SD-Latheaut SD-Latheaut SD-Latheau SD-Latheau V = Water C-C0 A-Alr DS-Dame Salida DA-Dryon Liquida T-Thatea V-Vagatadea X-Char
FINAL SAMPLE Disposi Me	shod .					Dispo	ecd By				D	sto/?iene	
DISPOSITION	•		1										

Bechtel Hanford Inc.	rd Inc.	2	CHAIN OF CUS	CUSTODY/SAMPLE ANALYSIS KEŲUESI	AMPLE	ANALY	AN SIS	TOTAL)	***	1 1 1 1 1		1
Rome Metern Stort Kolich	wich	Comp	Company Control Mike Stankovich	Telephone No. 531-7620	e Ne.		Pre-	Project Coundantor TRENT, SI	Price Cade	78	Data Turnaround	
Project Designation 100 H Ares - Pult Protocol		Seman.	Sampling Location 1	H0924		(1445)	8AF No. 1899-042	Na. 042	Air Quality		21 Days	
he Cheet ERO	ERC 99.043(अक्ट)		Field Legbook No. EL-1500-2		COA ROOH! 72600		M.	Method of Shipment Federal Express				,]
SALPROS TO THANK		Offsite Prope	Property No.	254			3	W-4238	1453 7	7423	^	
POSSIBLE SAMPLE HAZARDSARMARKS	RDSÆEMARKS			1	OS.	nd,	- 3				- 	
Rank	م ا		Type of Container	Q	780	사은						Τ
		·	Ne. of Container(s)	-	92.		-	-				Γ
Special Handling and/or Storage	*		Volume	7 E	1	L	100el.					
00025	BAMPLE ANALYSIB			18.00 12000 12000			611					
Sumple No.	Machs *	Sample Date	Sumple Tiese									
BOYRAS	1804	00/02	1835	×		,	X		·		Al	T.
BOYPA4	-80E	20/00	0480-	X			×				42	٦,
BOYRAS	SOIL	00/02/	5580	X			7				A	W
												T
NUISSESSON SO NEVEL		Stea-Prist Na	Vames		SPECIA	SPECIAL INSTRUCTIONS	SNOR		1	7/4-1	Metrix	T
SMENCH R	R. Nickon 120 LD	(打)	Maria	PSS 00.0	_	Mater vore	To Contract	(7) T. P. Halling - vortex (Supercones) (Admin, Christian, Christian); (2) Gamma Speckensopy (Curius-157, Octobric 60, Brogdon-152)	314	KJ N. 1120(00)	113	
KINS YVE	194.00 was	tede tede	EN 7/24	e	1 1						201	
3		٦	Johnie	12.5.1	न्त	L					A COLOR	, 1
Subspired by	Date/Time	4	A			J	3					
Refrequence By	Date/Time	Leceived By	4	Deerflase							1	
Lineighed By	Daw/Ties	Lecebood By	a 	Desylan	- -			,				1
LABORATORY Received By				Ž.						Ž.	DetoTime	
WINAL RAMPLE Dispused Market						Disposed By	£			基 :	Deta/Tites	
BH-EE-011 (10/99)												Ì

Appendix 5

Data Validation Supporting Documentation

RADIOCHEMICAL DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	A	8	(C)	D	Ε
PROJECT: / O	10 10	×0-H-17	DATA PACKAGE	: H0924	
VALIDATOR:		LAB: T/	?	DATE: 9/75	/vo .
CASE:			SDG: Ho	0924	
		ANALYSES	PERFORMED		
☐ Gross Alphs/Bets	Strontium-90	☐ Technetium-88	(Z)Alpha Bpectroscopy	Gemme Spectroscopy	
☐ Total Uranium	☐ Redium-22	□ Tritium	o		
SAMPLES/MATE	RIX BOYR	43 BOY	RY4 BO	4R45	BOYERYG
	BOYR			34R49	BOYRSO
	BOYRS			-	
_				•	
					Say
1. Completen	iess				A/MPET
•	ification for	me procent?		٧٥	(
		ms hiesenri		16:	י ווט ווייר
Comments:					
					e e
		<u> </u>			
2. Initial (Calibration .	• • • • • •			XN/A
Instruments/cone year	detectors cal	ibrated within	1	Ye	*
_	ration accept	•			-
Standards NIS	ST traceable?			Ye	s No N/A
Standards Exp	oired?	• • • • • •		Ye	s No N/A
Comments:					
		-			
		· · · · · · · · · · · · · · · · · · ·			

000027

Calibration checked within one week of sample analysis? Yes No N/ Calibration check acceptable?
Calibration check acceptable?
Calibration check standards NIST traceable? Yes No N/Calibration check standards expired? Yes No N/Comments: 4. Blanks
4. Blanks
4. Blanks N/ Method blank analyzed? No N/ Method blank results acceptable? No N/ Analytes detected in method blank? Yes No N/ Field blank(s) analyzed? Yes No N/ Field blank results acceptable? Yes No N/ Analytes detected in field blank(s)? Yes No N/
Method blank analyzed?
Method blank analyzed?
Method blank results acceptable?
Analytes detected in method blank? Yes No N/Field blank(s) analyzed?
Field blank(s) analyzed? Yes No N/Field blank results acceptable? Yes No N/Analytes detected in field blank(s)? Yes No N/
Field blank results acceptable? Yes No N/Analytes detected in field blank(s)? Yes No N/
Analytes detected in field blank(s)? Yes No N/
Transcription/Calculation Errors? Yes No N/
Comments:
5. Matrix Spikes
Matrix spike analyzed? Yes No N/
Spike recoveries acceptable? Yes No N/
Spike source traceable?
Spike source expired? Yes No N
Transcription/Calculation Errors? Yes No N,
Comments:
·

6. Laboratory Control Samples	. □ N/A
LCS analyzed? Yes	No N/A
/ −₹	No NA
LCS traceable? Yes	No NA
Transcription/Calculation Errors? Yes	No MA
Comments:	
7. Chemical Recovery	. ⊔ N/A
Chemical carrier added?	No N/A
Chemical recovery acceptable? Yes	NO N/A
Chemical carrier traceable? Yes	No (N/A)
Chemical carrier expired? Yes	No NAK
Transcription/Calculation errors? Yes	No NYA
Comments: BOYRY4 - 10870 T 233 x 238	
8. Duplicates	. D.N/A
Duplicates Analyzed?	No N/A
RPD Values Acceptable? Yes	No N/A
Transcription/Calculation Errors? Yes	No (N/A)
Comments:	
	

9. Field QC Samples · · · · · · □ N/A
Field duplicate sample(s) analyzed? Yes No N/A Field duplicate RPD values acceptable?
Field split sample(s) analyzed? Yes No N/A
Field split RPD values acceptable? Yes No W/A
Performance audit sample(s) analyzed? Yes No N/A
Performance audit sample results acceptable? Yes No NA Comments:
10. Holding Times
Are sample holding times acceptable? Yes No N/A
Comments:
11. Results and Detection Limits (Levels D & E) 🗆 N/A
Results reported for all required sample analyses? Yes No N/A
Results supported in raw data? Yes No (N/A)
Results Acceptable?
Transcription/Calculation errors? Yes No N/A MDA's meet required detection limits? Yes No N/A
Transcription/calculation errors? Yes No N/A
Comments:
·

TMA/RICHMOND

SAMPLE DELIVERY GROUP B0924

Test U Matrix SOLID

SDG 7445

Contact Melissa C. Mannion

METHOD SUMMARY
URANIUM, ISOTOPIC IN SOIL
ALPHA SPECTROSCOPY

Client Hanford
Contract TRC-SBB-207925
Contract SDG H0924

METHOD PERFORMANCE

	LAB	RAN	Sup-	MAX MOV	aliq	PREP	DILU-	AIRTD	KPF	COUNT	PATR	DRIFT	DAYS		ANDL;-	
CLIERT SAMPLE ID	SAMPLE ID	Test	FIX	pC1/g	g	PAC	TION		*	min	keV	KeV	HELL	PREPARED	YEED	DETECTO
Preparation batch 6929-	963 2s pr	ep err	or 5.	0 % Ref	erence	Leb N	otebool	c 6929	pg.	063		•				
BOYR43	R007125-01			0.15	0.500			92		155			29	08/18/00	08/18	88-039
BOYR44	R007125-02			0.15	0.500			89		157			33	08/18/00	08/22	88-031
BOYR45	R007125-03			0.15	0.500			91		155			29	08/16/00	08/18	86-041
BOYR46	R007125-04			0.13	0.500			108		155		•	29	08/18/00	08/18	SS-042
BOYR47	R007125-05			0.15	0.500			97		155			29	08/18/00	08/18	SS-043
BOYR48	R007125-06			0.15	0.500			97		155			29	08/18/00	98/18	88-044
BOYR49	R007125-07			0.15	0.500			95		155			29	08/18/00	08/18	86-045
BOYR50	R007125-08			0.17	0.500			81		155			29	08/16/00	08/18	SS-046
BOYR51	R007125-09			0.91	0.100			83		155			29	08/18/00	08/18	SS-047
BOYR53	R007125-10			0.14	0.500			98		155			29	08/18/00	08/18	SS-048
BLK (QC ID=35543)	R007125-15			0.76	0.100			97		155				08/18/00	08/18	\$8-050
LCS (QC ID=35542)	R007125-14			2.6	0.100			102		155				08/18/00	08/18	88-049
Duplicate (R007125-07)	R007125-16			0.24	0.500			81		154			29	08/18/00	08/18	88-020
(QC ID=35544)																
Mominal values and limi	ts from metho	d		1.0	0.100			20-10	5	150	100	-	180	 		

PR	CEDICEES	REFERENCE CP-911	UISO_PLATE_AEA Uranium in Water and Dissolved Sample by
			Extraction Chromatography, rev 2
		CP-008	Heavy Element Electroplating, rev 3

AVERACES ± 2 SD MOA 0.45 ± 1.4

FOR 13 SAMPLES YIELD 93 ± 16

Page 4
SUPPREY DATA SECTION
Page 28

R007125-12

METHOD BLANK

Method Blank

	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG H0924
Lab sample id Dept sample id		Client sample id Material/Matrix SAF No		SOLID

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST
Total Strontium	SR-RAD	-0.307	0.57	0.79	1.0	U	SR
Potassium 40	13966-00-2	σ		0.31		U	GAM
Cobalt 60	10198-40-0	U		0.020	0.050	U	GAM
Cesium 137	10045-97-3	σ		0.015	0.10	U	GAM
Radium 226	13982-63-3	Ü		0.031	0.10	U	GAM
Radium 228	15262-20-1	บ		0.072	0.20	ט	GAM
Ruropium 152	14683-23-9	ט		0.040	0.10	U	GAM
Europium 154	15585-10-1	Ü		0.053	0.10	U	GAM
Europium 155	14391-16-3	ס		0.051	0.10	ช	GAM
Thorium 228	14274-82-9	U		0.024		U	GAM
Thorium 232	TH-232	U		0.072		บ	GAM
Uranium 235	15117-96-1	บ		0.066		ប	GAM
Uranium 238	U-238	ד		1.9		ט	GAM
Americium 241	14596-10-2	ช		0.12		Ü	GAM

100 H AREA - FULL PROTOCOL

QC-BLANK	#35249	

Page 1
SUMMARY DATA SECTION
Page 9

R007125-15

METHOD BLANK

Method Blank

· ·	7445 Melissa C. Mannion	Client/Case no Contract	Hanford TRC-SBB-207925	SDG_H0924
Lab sample id Dept sample id		Client sample id Material/Matrix SAF No		SOLID

ANALYTE	CAS NO	RESULT pCi/g	20 ERR (COUNT)	bcī\a	RDL pCi/g	QUALI- FIERS	TEST
Uranium 233	U-233/234	0.082	0.16	0.63	1.0	U	ŭ
Uranium 235	15117-96-1	0	0.20	0.76	1.0	ប	υ
Uranium 238	U-238	0	0.16	0.63	1.0	บ	U
Plutonium 238	13981-16-3	0.052	0.16	0.32	1.0	บ	PU
Plutonium 239/240	PU-239/240	-0.026	0.21	0.40	1.0	ซ	PU

100 H AREA - FULL PROTOCOL

BLANK QC-BLANK #35543

METHOD BLANKS
Page 2
SUMMARY DATA SECTION
Page 10

TMA/RICHMOND

SAMPLE DELIVERY GROUP H0924

R007125-11

LAB CONTROL SAMPLE

Lab Control Sample

	7445 Melissa C. Mannion	Client/Case no Hanford Case no TRC-SBB-20792	SDG H0924
Lab sample id	R007125-11	Client sample id <u>Lab Control</u> Sa	mple
Dept sample id	7445-011	Material/Matrix	SOLID
		SAF No <u>B99-042</u>	

AMALYTE	pCl/g	2# ERR (COUNT)	PC1/g	pCi/g	QUALI- FIERS	TEST	ADDED pC1/g	2# ERR pCi/g	REC t	3# LMTS (TOTAL)	PROTOCOL
Total Strontium	63.8	2.0	0.82	1.0		8R	55.5	2.2	115	81-119	80-120
Cobalt 60	0.269	0.048	0.029	0.050		GAM	0.307	0.012	88	69-131	80-120
Cesium 137	0.376	0.049	0.038	0.10		GAM	0.365	0.015	103	69-131	80-120

100 H AREA - FULL PROTOCOL

LAB CONTROL SAMPLES
Page 1
SUMMAY DATA SECTION
Page 11

Protocol Hanford
Version Ver 1.0
Form DVD-LCS
Version 1.06
Report date 09/05/00

R007125-14

LAB CONTROL SAMPLE

Lab Control Sample

	7445 Melissa C. Mannion	Client/Case no <u>Hanford</u> <u>SDG R0924</u> Case no <u>TRC-SBB-207925</u>
Lab sample id Dept sample id	· · · · · · · · · · · · · · · · · · ·	Client sample id <u>Lab Control Sample</u> Material/Matrix <u>SOLID</u> SAF No <u>B99-042</u>

AUALYTB	RESULT pCi/g	20 BRR (COUNT)	MDA pC1/g	RDL pCi/g	QUALI- FIERS	TEST	ADDED pCi/g	20 ERR pCi/g	REC 4	3# LMIS (TOTAL)	PROTOCOL LIMITS
Uranium 233	48.4	5.7	2.6	1.0	,	ซ	46.4	1.9	104	79-121	80-120
Uranium 235	36.3	4.7	0.71	1.0		ס	37.7	1.5	96	79-121	0-120
Uranium 238	50.9	5.8	2.5	1.0		י ד	50.4	2.0	101	80-120	80-120
Plutonium 238	64.2	5.0	0.44	1.0		PU	62.2	2.5	103	84-116	80-120
Plutonium 239/240	63.4	4.9	0.29	1.0		PU	66.1	2.6	96	86-114	80-120

100 H ARRA - FULL PROTOCOL

		
ICS		
QC-LCS #35542		

LAB CONTROL SAMPLES
Page 2
SUMMARY DATA SECTION
Page 12

Protocol Renford

Version Ver 1.0

Form DVD-LCS

Version 1.06

Report date 09/05/00

R007125-13

Dept

DUPLICATE

BOYRA9

SDG	7445				Client/Case no	Henford SDG H0924
Contact	Melissa C. Mannion				Case no	TRC-SBB-207925
	DOPLICATE			ORIGINAL		•
sample id	R007125-13	Lab samp	le id	R007125-07	Client sample id	BOYR49
sample id	7445-013	ept samp	le id	7445-007	Location/Matrix	100-H-17 SOLID
	•	Rec	eived	07/25/00	Collected	07/20/00 09:47
		* *	olida	98.9	Custody/SAF No	B99-042-045 B99-042

	DUPLICATE	20 ERR	HDA	RDL	CONTI-		ORIGINAL	20 ERR	MDA	QUALI-	RPD	3#	PRO
ANALYTE	pC1/g	(COUNT)	pC1/g	pCi/g	PIERS	TEST	pC1/g	(COUNT)	pCi/g	Piers		TOT	LIMI
Total Strontium	0.196	0.081	0.12	1.0	J	SR	0.217	0.096	0.12	J	10	94	
Potassium 40	16.3	0.02	0.31			GAM	15.0	0.53	0.22		8	33	
Cobalt 60	Ū		0.033	0.050	U	GAM	υ		0.024	U	-		
Cesium 137	0.119	0.029	0.033	0.10		GNM	0.100	0.018	0.022		17	57	
Radium 226	0.564	0.064	0.061	0.10		GAM	0.553	0.049	0.046		2	38	
Radium 228	0.684	0.15	0.16	0.20		GAM	0.730	0.10	0.10		7	50	
Buropium 152	U		0.073	0.10	σ	GAM	ש		0.057	U	-		
Ruropium 154	U		0.12	0.10	· 😈	COM	ט		0.079	U	-		
Europium 155	ซ		0.067	0.10	ד	GAM	ซ		0.081	U	-		
Thorium 228	0.880	0.060	0.059			GAM	0.677	0.032	0.031		26	35	
Thorium 232	0.684	0.15	0.16			GNH	0.730	0.10	0.10		7	50	
Oranium 235	ט		0.11		ซ	GAK	υ.		0.10	ט	-		
Uranium 238	ט		3.8		ט	GAM	ט		3.0	U	-		
Americium 241	U		0.042		U	GAM	ט		0.18	U	-		

100 H AREA - PULL PROTOCOL

	35250	QC-DUP#7
--	-------	----------

DUPLICATES
Page 1
SUMMARY DATA SECTION
Page 13

TMA/RICHMOND SAMPLE DELIVERY GROUP H0924

R007125-16

Lab Dept

DUPLICATE

BOYR49

SDG	7445				Client/Case	no	Hanford SDG H0924
Contact	Melissa C. Mannion				Case	по	TRC-SRB-207925
	DUPLICATE			ORIGINAL			
sample id	R007125-16	Lab sample	iđ	R007125-07	Client sample	id	BOYR49
sample id	7445-016	Dept sample	id	7445-007	Location/Mat:	rix	100-H-17 SOLID
		Recei	ved	07/25/00	Collect	ted	07/20/00 09:47
		t sol	ids	98.9	Custody/SAP	No	B99-042-045 B99-042

AMALYTE	DOMLICATE pCi/g	2# ERR (COUNT)	MDA pCi/g	RDL pC1/g	Quali- Piers	TEST	original pCi/g	2¢ ERR (COUNT)	MDA pCi/g	QUALI- PIERS	RPD t	3e TOT 1	PROT
Uranium 233	0.312	0.16	0.20	1.0	J	ט	0,242	0.13	0.12	J	25	112	•
Uranium 235	0.063	0.063	0.24	1.0	U	ט	0.020	0.039	0.15	ซ	-		
Uranium 238	0.521	0.22	0.20	1.0	J	υ	0.403	0.16	0.12	J	26	89	
Plutonium 238	-0.010	0.015	0.042	1.0	ט	PU	0.021	0.034	0.056	U	-		
Plutonium 239/240	0	0.021	0.039	1.0	ū	20	0.017	0.034	0.056	U	-		

100 H AREA - FULL PROTOCOL

DUP#7 QC-DUP#7 35544

DUPLICATES
Page 2
SUBSTANT DAYA SECTION
Page 14

Leb id TMANC
Protocol Hanford
Version Ver 1.0
Form DVD-DUP
Version 3.06
Report date 09/05/00

Date:

6 October 2000

To:

Bechtel Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100-H Areas - Full Protocol - Waste Site 100-H-17

Subject: Inorganics - Data Package No. H0924-RLN (SDG No. H0924)

INTRODUCTION

This memo presents the results of data validation on Data Package No. H0924-RLN prepared by RECRA LabNet (RLN). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analysis
BOYR43	7/20/00	Soil	С	See note 1
BOYR44	7/20/00	Soil	С	See note 1
BOYR45	7/20/00	Soil	С	See note 1
BOYR46	7/20/00	Soil	С	See note 1
BOYR47	7/20/00	Soil	С	See note 1
BOYR48	7/20/00	Soil	С	See note 1
BOYR49	7/20/00	Soil	е	See note 1
BOYR50	7/20/00	Soil	С	See note 1
BOYR51	7/20/00	Soil	С	See note 1
BOYR53	7/20/00	Soil	С	See note 1

^{1 -} Chromium VI by 7196A; ICP metals (arsenic, chromium and lead) by 6010B

Data validation was conducted in accordance with the BHI validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL May 1998). Appendices 1 through 5 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

Holding Times

Analytical holding times for metals are assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be analyzed within six months for ICP metals and 30 days for chromium VI.

All holding times were acceptable.

Blanks

Preparation Blanks

At least one preparation blank, consisting of deionized distilled water processed through each sample preparation and analysis procedure, must be prepared and analyzed with every sample delivery group. In the case of positive blank results, samples with digestate concentrations less than five times the preparation blank value have had their associated values qualified as non-detected and flagged "U". Samples with concentrations of greater than five times the highest blank concentration do not require qualification.

In the case of negative blank results, if the absolute value exceeds the Contract Required Detection Limit (CRDL), all nondetects are rejected and flagged "UR" and all detects that are less than ten times the absolute value of the associated preparation blank result are qualified as estimates and flagged "J". If the absolute value of the negative preparation blank is greater than the IDL and less than or equal to the CRDL, all nondetects are qualified as estimates and flagged "UJ" and all detects less than ten times the absolute value of the blank are qualified as estimates and flagged "J". If the sample results are greater than ten times the absolute value of the preparation blank, no qualification is necessary.

All preparation blank results were acceptable although the TDL was exceeded for chromium VI.

Equipment Blank

One equipment blank (BOYR53) was submitted for analysis. Chromium and lead were detected in the equipment blank. Under the BHI statement of work, no qualification is required.

Accuracy

Matrix Spike

Matrix spike analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike recoveries must fall within the range of 70% to 130%. Samples with a spike recovery of less than 30% and a sample result below the IDL are rejected and flagged "UR". Samples with a spike recovery of 30% to 69% and a sample result less than the IDL are qualified "UJ". Samples with a spike recovery of greater than 130% or less than 70% and a sample result greater than the IDL are qualified as estimates and flagged "J". Finally, for samples with a spike recovery greater than 130% and a sample result less than the IDL, no qualification is required.

All matrix spike recovery results were acceptable.

Precision

Laboratory Duplicate Samples

Laboratory duplicate sample analyses are used to measure laboratory precision and sample homogeneity. Results must be within RPD limits of plus or minus 30% for solid samples. If RPD values are out of specification and the sample concentration is greater than five times the CRDL, all associated sample results are qualified as estimated and flagged "J". If RPD values are plus or minus two times the CRDL and the sample concentration is less than five times the CRDL, all associated sample results are qualified as estimated and flagged "J/UJ". The performance criteria for aqueous laboratory duplicates are an RPD less than 30% for positive sample results greater than five times the CRDL or plus or minus the CRDL for positive sample results less than five times the CRDL. Sample results outside the criteria are qualified as estimates and flagged "J/UJ".

All laboratory duplicate results were acceptable.

Field Duplicates

One set of field duplicates (BOYR46/BOYR51) were submitted for analysis. The results were compared using the same criteria as for a laboratory duplicate. All field duplicate results were acceptable.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area Remedial Action Sampling and Analysis Plan TDLs or the CRDL if no TDL was specified, to

ensure that laboratory detection levels meet the required criteria. The TDL was exceeded for chromium VI in all undetected samples. Under the BHI statement of work, no qualification is required.

Completeness

Data package No. H0924-RLN (SDG No. H0924) was submitted for validation and verified for completeness. The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The TDL was exceeded for chromium VI in all undetected samples. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, *Validation Statement of Work*, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 1, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, May 1998.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with BHI validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- Indicates the compound or analyte was analyzed for and detected. Due to a QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- BJ Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

DATA QUALIFICATION SUMMARY

SDG: H0924	REVIEWER: TLI	DATE: 10/6/00	PAGE_1_0F_1_
COMMENTS: No qualifiers	assigned	-	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
		`	
			·

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

				,													
Project: BECHTEL-HANFOR				1										÷			
Laboratory: RECRA LabNet																	
	SDG: HO					·				1							
Sample Number		BOYR43		BOYR44		BOYR45		80YR46		BOYR47		BOYR48		BOYR49		<u> </u>	
Location		100-H-17	7	100-H-17	<u>'</u>	100-H-17		100-H-17		100-H-17	<u>'</u>	100-H-17	<u>' </u>	100-H-17			
Remarks						<u> </u>											
Sample Date		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00		7/20/00			
Inorganica			a				Q		a				Q		a	Result	Q
Chromium VI	0.1	0.41		0.46		0.40		0.40		0.41		0.40		0.47			-
Arsenic (total)		3.4		3.3	L	2.5	_	2.3		3.6		2.9	_	2.4		ļ	4
Chromium (total)	0,5			11.1		9.2		10.5	ļ	7.6		10.2		9.4			1
Lead (total)	2	5.6		5.6	<u> </u>	4.0		3.1		8.2	<u>_</u>	8.1	L	3,6			
										<u> </u>						<u> </u>	1
											ㄴ			•			1
												<u> </u>					
Sample Number		BOYR50		BOYR51		BOYR53											
Location		100 H 17	7	100-H-17	'	100-H-17											
Remarks				Duplicate		E. Blank											
Sample Date		7/20/00		7/20/00		7/20/00											
Inorganic Anaysis	CRDL	Result	Q				Q	Result	d	Result	a	Result	Q	Result	Q	Result	a
Chromium VI	0.1	0.43		0.40	U	0.40	U										
Areenic (total)		3.7		2.6		0.30	U						L				
Chromium (total)	0.5	11.7		11.8		0.21											<u> </u>
Lead (total)	2	8.4		3.9		1.2											
			T														
			Ī														
- ASSANIA AND AND AND AND AND AND AND AND AND AN			1		T												
	-		1		T	1					Г		1				T
					$\overline{}$		<u> </u>	3			\sqcap		1				1
			\Box					1	-		Г	T	1			Î	
			t		1						П			1			1
			1		 	† <u>-</u>			<u> </u>					1			1
			+	 	\vdash	 	· · · ·				t	†	t				1
			+	 	\vdash	 	t	 		 	 	 	 				1
					╌	 		· ····			\vdash	 	╁				+

Recra LabWet - Lionville

INCREANTES DATA SUBBARY REPORT 08/17/00

CLIENT: THU-HAMPORD B99-042

RECKA LOT 0: 0007L961

MORK	ORDER:	10985-001-001-9999-00	

					REPORTING	DILUTION
emple	SITE ID	ANALYTS	PECUAT	UNITS	Linit	FACTOR
	******		********			
-001	BOYR43	* #olids	98.5	•	0.01	1.0
		Chronium VI	0.41 u	MG/103	0.41	1.0
-002	BOYR44	* Solide	87.4	•	0.01	1.0
		Chrowium VI	0.46 u	ng/kg	0.46	1.0
-003	BOYR45	t solids	99.5	•	0.01	1.0
		Chromium VI	0.40 u	NG/KG	0.40	1.0
-004	BOYR46	% Solida	99.6	•	0.01	1.0
		Chronium VI	0.40 u	MG/XG	0.40	1.0
-005	BOYR47	% Solids	90.1	•	0.01	1.0
		Chronium VI	0.41 u	MG/KG	0.41	1.0
-006	BOYR48	% Solids	99.2	•	0.01	1.0
		Chronium VI	0.49 u	MG/KG	0.40	1.0
-007	BOYR49	% Solids	98.6	•	0.01	1.0
		Chrosium VI	0.47	NG/103	0.40	1.0
-008	BOYRSO	t solide	94.4	•	0.01	1.0
		Chronium VI	0.43	144/ 100	0.42	1.0
-009	BOYR51	% Solids	**.4	•	0.01	1.0
		Chromium VI	9.40 u	MG/KG	0.40	1.0
-010	BOYRS3	t Solide	100	•	0.01	1.0
		Chromium VI	0.40 u	NG/KG	0.40	1.0

10/4/00

Resrs LabNet - Lionville

IMORGANICS DATA SUMMARY REPORT 08/23/00

CLIENT: THU-EANFORD B99-042

RECEA LOT #: 0007L961

MORK ORDER: 10985-061-061-9999-08

					Kerorting	dipolion
eample	SITE ID	ARALYTE	result	UNITE	LIMIT.	PACTOR
****	*************		******	****		*****
-001	BOYR43	Arsenis, Total	3.4	165/7.6	0.31	1.0
	•	Chromium, Total	1.9	MQ/37.0	0.0	1.0
		Lead, Total	8.6	103/X0	0.19	1.0
-002	BOYR44	Arsenic, Total	3.3	100/X6	0.35	1.0
		Chromium, Total	11.1	100/100	0.09	1.0
		Load, Total	3.6	109/108	0.33	1.0
-063	DOYR45	Arsenie, Total	3.5	10G/T/G	0.30	1.0
		Chromium, Total	9.2	Mg/Kg	0.06	1.0
		Lead, Total	4.0	10G/10G	0.19	1.0
-004	BOYR46	Arsenic, Total	2.3	164/10a	0.31	1.0
		Chromium, Total	10,5	144/164	0.0	1.0
		Lead, Total	3.1	105/102	0.19	1.0
-005	BOYR47	Arsenic, Total	3.6	165/105	0.31	1.0
		Chromium, Total	7.6	166/T/G	0.08	1.0
		Load, Total	6.2	149/129	0.19	1.0
-006	BOYR48	Arsenic, Total	2.9	166/108	0.30	1.0
		Chromium, Total	10.2	146/X3	0.00	1.0
		Lead, Total	6.1	100/303	0.18	1.0
~007	BOYRAS	Arconic, Total	2.4	162/EG	9.31	1.0
		Chromium, Total	9.4	149/109	0.08	1.0
	•	Lead, Total	3.6	164/10	0.29	1.0
-008	BOYESQ	Arsenie, Total	3.7	166/100	0.31	1.6
		Chromium, Total	22.7	MO/KO	0.00	1.0
		Load, Total	0.4	MO/375	0.19	1.0
-009	BOY#51	Azsenic, Total	2.4	162/ES	0.30	1.0
		Chronium, Total	11.6	169/309	0.0	1.0
		Load, Total	3.9	149/RG	9.19	1.0
-010	BOYR53	Arsenia, Total		105/RG	6.30	1.0
		Chromium, Total	0.21	169/105	0.00	1.0
		Lead, Total	1.2	MG/KG	0.28	1.0

P10/3/00

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: TNU-HANFORD B99-042

RFW#: 0007L961 SDG#: H0924

SAF#: B99-042

W.O. #: 10985-001-001-9999-00

Date Received: 07-25-00

INORGANIC CASE NARRATIVE

1. This narrative covers the analyses of 10 soil samples.

- 2. The samples were prepared and analyzed in accordance with the methods checked on the attached glossary.
- 3. Sample holding times as required by the method and/or contract were met.
- 4. The cooler temperature was recorded on the chain-of-custody.
- 5. The method blank for Chromium VI was within method criteria.
- 6. The Laboratory Control Samples (LCS) for Chromium VI were within the laboratory control limits.
- 7. The matrix spike recoveries for Chromium VI were within the 75-125% control limits.
- 8. The replicate analyses were within the 20% Relative Percent Difference (RPD) control limit.
- 9. Results for solid samples are reported on a dry weight basis.
- 10. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

ng/107-961

08.29-00

Date

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 13 pages.

000014

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: TNU-HANFORD B99-042

RFW#: 0007L961

SDG/SAF#: H0924/B99-042

W.O.#: 10985-001-001-9999-00

Date Received: 07-25-00

METALS CASE NARRATIVE

1. This narrative covers the analyses of 10 soil samples.

- 2. The samples were prepared and analyzed in accordance with methods checked on the attached glossary.
- 3. All analyses were performed within the required holding times.
- 4. The cooler temperature has been recorded on the Chain of Custody.
- 5. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within the 90-110% control limits (80-120% for Mercury).
- 6. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits (less than the POL).
- 7. All preparation/method blanks (MB) were within method criteria {less than the Practical Quantitation Limit (3X the IDL) or samples greater than 20X MB value}. Refer to the Inorganics Method Blank Data Summary.
- 8. All ICP Interference Check Standards were within control limits.
- 9. All laboratory control samples (LCS) were within the laboratory control limits. Refer to the Inorganics Laboratory Control Standards Report.
- 10. All matrix spike (MS) recoveries were within the 75-125% control limits. Refer to the Inorganics Accuracy Report.
- 11. All duplicate analyses were within the 20% Relative Percent Difference (RPD) control limits. Refer to the Inorganics Precision Report.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of $\frac{1}{5}$ pages $\frac{1}{5}$

- 12. For the purposes of this report, the data has been reported to the Instrument Detection Limit (IDL). Values between the IDL and the Practical Quantitation Limit (PQL) are acquired in a region of less-certain quantification.
- 13. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

mid/m/07-961

09-05-00

Date

Becht	el Hanford Inc.	ı	C	hain of cus			E ANAL	YSIS	RE	QUEST	_L	B9	9-042-045	Jude 1	or T
Collector Renee Nielson	M. Stani	Coyich	Comp Mik	any Contact te Stankovich	Telepho 531-7	ne Na. 620			TRE	ect Coordinat NT, SJ		Price Code	8L		ruaround Thomas
Project Designation 100 H Area - Fu	<u> </u>		Sampl 100	ing Location -H-17					SAF B99		1	Air Qualit		. 21	Days
ice Chest No.	2RC199	01 110	F) Flore	Legbook No. 1500-2		COA ROOH172	600		Meti	hod of Shipme adoral Express	at .				? - i
Shipped To TMA/RBCRA	N 1 7 100	RECEA	Official	Property No.	Ø 02)	42			348	423	N ST	৭53-	7491	2	
1	iple Hazards/Re	MARKS		Preservation	100	f	Plane	-							
	NONE_			Type of Container	3	-0	-0	5	Ş				 		1
ł				No. of Container(e)	N	1	1	F	7				1		T
Special Handling	and/or Storage			Volume	JOHL	125eL	250mL	4	<i>7</i> 1 I			 			†
00017	SAI	MPLE ANALYS	is		328	Chamber Hex-7194	See hum (1) in Special Instructions.								
. Sample N	lo. Mi	drix *	Sample Date	Sample Time											
BOYR49	8	OIL.	7/20/00	0947		X	X								187
BOYR50	8	OIL	72010	U 0930		人	X				•				87 82
BOYR51		Off.	7/20/01	0923		*	X								
BOYR53	. 8	OIL	7/20/0	0 0827		人	X		4			·			
CHAIN OF P	OSSESSION	<u></u>	Sign/Print	Names	<u> </u>	aner.	IAL INSTR					<u></u>		L	Matrix *
KTNON Seo S	7. Niekon 1. 7.29.0	09/5	المستحدد	14 Druze 7.2	to/Time	<u> </u>	7º Méstale - 401 	OA (Supe esspy- (C o	strace) sisser•i	{Americ, Chrom	7	77.0	به. ب	M33]	9-Eeli SP-Eelimat AD-Eelid S-Bholge W-Water O-Oli A-Ale SE-Draw Selid M-Phras Ligal T-Times
Relinquished By	Date	/Time	lacelyed By	Del	ho/Time		T	12	. T	0 (O	18 M	ව		I-Liquid V-Vegetaten X-Other
Relinquiched By	Date	/Time	leceived By	De	le/Time										İ
LABORATORY SECTION	Received By	······································			Tide					 		·····	D	de/Tinye	
FINAL SAMPLE DISPOSITION	Disposal Method						Dispos	od By					D	sto/Time	
THE ES 044 440400	<u></u>											· · · · · · · · · · · · · · · · · · ·			

Bechtel Han	ford Inc.	C	HAIN OF CUS	TODYS	AMPL	E ANAL	YSIS	REQ	UEST	By:	J-U42-044	-	· •
Collector Rence Nielson M.	Stankolich	Com	pany Contact ke Stankovich	Telepho 531-7	oc No. 620			Projec TREN	t Coordinator T, \$J	Price Code	8L `		programa
Project Designation 100 H Area - Pull Protoco	•	Same	iling Location D-FF-17					8AF N 899-04		Air Quality	<i>'</i> 🗆	21	Days
Ice Chest No.	99.011 70	Picki EL	Loghack No. -1500-2		COA ROOH172	600		Metho Fode	d of Shipment ral Express				2
	GLFA		le Property No.	3002°	42			300 of	42.35	7483	-744	(0)	C
Possibile Sample Ha	ZARDS/REMARKS				Coul 4C	Nema	1				·		T
w	sul		Preservation	170	øG -		1-1				 	 	
			Type of Container	1 7		aG		Ö			<u> </u>		
	_		No. of Container(s)	145	1	<u>'</u>	7	7					<u> </u>
Special Handling and/or S	Herage		Volume	OK.	125ml.	250mL	P	ð					
0	•			99,90 Tons	Chambra Hen - 7196	See ham (1) in Special		9=			1	 	
00	Sample ana	LYSI6		5: 10.14C)		Instructions.	-	-	}			1	
00018				RIAM			1						
. Sample No.	Matrix •	Sample Date	Sample Time	7/24/00									
BOYR46	SOL	7/20/00	0 0923		X	X		7					44
B0YR47	SOL	7/2010			X	X						····	185
BOYR48	* SOIL	7701	0 6945		X	X							85 B6
		<u> </u>											
CHAIN OF POSSESS		Sign/Print	Manage .	<u> </u>					<u></u>		لبيا	L	Matrix *
ally and shed by	DayTing G	77 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7	Tarradia D	de/Time		TAL INSTR				•	7/20/00	RIN	MARTIX 9
EXMONITY OF N	clum 7/20/00			<u> </u>	24 %	27 Mintels - 604 Arma <u>n</u> Spoulou	16A (Supe	rirace) (/ about 137	Lesonic, Chromino, , Coluit 60, Europ i	Lord); Marry- un-160, Burylun	1491 - (C U). - 154, Eprophus	H55)	SP-Selferen SO-delle
	Dony/Time	DIFG DE	بر نهر	MA I Jane						\mathcal{R}	TTO	4.00	6 -Maige W = Water O-O6
difficulty by	Date/Time	Resolved By	mi C ?	io/line	2001	-						!	A-Alt DS-Door Solt
Market By	7-25-00/091°	Received By		92.00 C	य ,				_			:	DL-Onun Liqu J-Fluxus
telinguished by						70	ح ٦		Bou	8w 4	3	ļ	Wi-Wipe L-Liquid V-Vagatajan
, ,	Date/Time	Received By		to/line									V-Vegetaine Z-Oder
Allegatebed By	Date/Time	Received By	De	to/Line	7				•				
LABORATORY Presided	> y		,	Trake	L				······································		Der	lo/Tima	<u> </u>
FINAL SAMPLE Disposed in Disposed in Disposition	lethod		1			Dispos	od By				De	is/Time	
													

Becht	tel Hanford	d Inc.	C	hain of cus			E ANAL	<u>YSIS.</u>			B9:	9-042-043	Lafet T or T
Collector Rence Nicison	Stanke	wich	Comp	eny Contact ko Stankovich	Telepho 531-7	ne No. 1620		. 12 '	Project (TRENT,	Coordinator 8J	Price Code	8L	Deta Turnaren
Project Designation 100 H Area - Fu	ost .		Samp 100	Hing Location I-H-17					SAF No. B99-042		Air Quality	7 🛭	21 Days
ice Chest No.	ERCA	9017	OF7 EL	Logbook Na. -1500-2	-	COA R00H172	606			of Shipment I Express			
Shipped To TMA/RBCRA		RX		Property No.	Ø 02	42			am of L	1235	7953	7497	٥
POSSIBLE SAM	eple hazar	DS/REMARKS		Preservation	1	Coel 4C	Ness	No					
	hour			Type of Container	10	aG	aG		8				
Special Handling	; and/or Stora	je		No. of Container(s) Volume	1	125mL	250mL	lea			_		
000019		SAMPLE ANA	LYSIS		13. THE REST OF TH	Chromium Hex - 7196	See item (1) in Special Instructions		PAP				
. Sample ?	No.	Matrix *	Sample Date	Sample Time		la La			2 ;				
BOYR43		SOIL	7/20/00			人	×						A
BOYR44		SOL	7/20/0	0 6840		Х	×						A
BOYR45		SOL	7/20/0	0 0855		×	X						A
Reflected By To Annual By Reflected By SECTION	Received By	Date/Time Date/Time Date/Time	R.Lha	Moren D	ASCO/C	84 (b) g	TAL INSTR	IOA (Supe reapy-{Ca	rtrace) (Ara ium-137, C	ŧ	RIN Leading Manager 12T7	WO	5-6-8 39-6-6-1 -155)
FINAL SAMPLE DISPOSITION	Disposal Mathe		17 · 7 · 19 · 19 · 19 · 19 · 19 · 19 · 1		······································		· Dispos	ed By				D	te/Time
MIN-EE-011 (10/90	2)			·					*****				

•

Appendix 5

Data Validation Supporting Documentation

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

PROJECT: (OC) VALIDATOR: - CASE: CASE:	CLP/GFAA		PERFORMED		27 (س
CASE:	CLP/GFAA	LAB: Rec	SDG: H		27/00
□ CLP/ICP		T	PERFORMED	०१२५	
- 		T	<u> </u>		
- 		T	<u> </u>		
(SW-SASACP		,	☐ CLP/Cyanide	0	0
أخنس والمساويات	□ 5W-846/GFAA	□ 8W-846/Hg	SW-846 Cymride	0	
SAMPLES/MATR	IX BOYRH	3 BOYR	44 BOY	RYJ BOY	RYG
	BOYRY:		48 BO		ynso
	BOYKS		_	<u> </u>	
				•	
	······································		•		
<u> </u>		- , , ,			Swill
		documentation	-		Yes No N/
2. HOLDING T				(Yes No N/

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

3. INSTRUMENT PERFORMANCE AND CALIBRATIONS		
Were initial calibrations performed on all instruments? Yes	No	N/A
Are initial calibrations acceptable? Yes	No	N/A
Are ICP interference checks acceptable? Yes	No	N/A
Were ICV and CCV checks performed on all instruments? Yes	No	N/A
Are ICV and CCV checks acceptable? Yes	No	N/A
Comments:		
4. BLANKS		
Were ICB and CCB checks performed for all applicable analyses? Yes	No	
Are ICB and CCB results acceptable? Yes	No	(N/A)
Were preparation blanks analyzed? Yes	No	N/A
Are preparation blank results acceptable? Yes	No	N/A
Were field/trip blanks analyzed? Yes	No	N/A
Are field/trip blank results acceptable? Yes	(No)	N/A
Comments: Chronica Chronica (total) 4 red in el	<u> </u>	~
5. ACCURACY		
Were spike samples analyzed? Yes	No.	N/A
Are spike sample recoveries acceptable? Yes	No	N/A
Were laboratory control samples (LCS) analyzed? Yes	No	CHAN
Are LCS recoveries acceptable? Yes Comments:	Мо	(H/A)
		.
		,

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

6. PRECISION								
Were laboratory duplicates analyzed?	No	N/A						
Are laboratory duplicate samples RPD values acceptable? (Yes)	No	N/A						
Were ICP serial dilution samples analyzed? Yes	No							
Are ICP serial dilution %D values acceptable? Yes								
Are field duplicate RPD values acceptable?	No	N/A						
Are field split RPD values acceptable? Yes	No	(N/A)						
Comments:								
7. FURNACE AA QUALITY CONTROL		$\overline{\bigcirc}$						
Were duplicate injections performed as required? Yes	No	KN/A						
Are duplicate injection %RSD values acceptable? Yes	No	N/A						
Were analytical spikes performed as required? Yes	No	N/A						
Are analytical spike recoveries acceptable? Yes	No	N/A						
Was MSA performed as required? Yes	No \	N/A						
Are MSA results acceptable? Yes	No	\n/ay						
Comments:								
8. REPORTED RESULTS AND DETECTION LIMITS								
Are results reported for all requested analyses? (ès) No	N/A						
Are all results supported in the raw data? Yes	No	-						
Are results calculated properly? Yes	No							
Do results meet the CRDLs?	(6)	N/A						
ı								
								

Recra Labblet . Liceralle

INORGANICS HETHOD BLANK DATA SUNHARY PAGE 06/17/00

		DILUTION	PACTOR	 1.0
0071961		REPORTING	LINIT	 0.40
RECEA LOT 6: 00071961			CHETTE	601/0H
ADER .			RESULT CHITS	 0.40 u #9/103
	9		MALTE	Chromium VI
CLIBET: TRU-HARPORD B99-042	MORK ORDER: 10965-001-001-9959-00		HAMPLE SITE ID	00LVI043-MB1
CLIBBE: 1	NORK ORDI		SAMPLE	BLAUDCEO

2010

		Insoluble Chromium VI	OUTT	DO4.0	21160	7.101	TOU
DITURNICTO	Colviosa - Mri	Soluble Chromium VI	T.A	407	0.5	9.101	0°T
		Insoluble chromium VI	OGTT	D0+.0	DETT	O. tot	100
010-	BOXERS	soluble chromium VI	1.8	no+.0	0.5	#*6TT	2.0
			*****		***		********
#74 <i>16</i> 48	QI SLIP	SILTERY	STANCE.	ltosen	THUCKE	#ESECOA	SYCLOS (BBK)
			ODVIAG	THILINE	OWNTAR		DIFOLTOR

NORK ORDER: TORRE-007-007-222-00 CITIBLE: JHG-HYMRORD B22-043

MEGRA TOT B: 00071961

INDERVIECE VCCNEVCE REBORE 08/13/00

Recre Labitet - Licenville

Recre LabMet - Licnville

Tivers.

THILINI

INCHEPRICE BERGISION SEBORE 08/11/00

RECENT FOL S: 0001/2961

REPLICATE RPD

NORK OKDEN: T0302-007-007-3333-00 CITEMAL: JRN-HYNLORD 833-043

-610REP

SENTOO-

STYLES. GI STIS SMIMS

BOTRSS Chromium VI

0.£

PACTOR (REP)

DITUITOR

-100

920000

Recra LabNet - Licaville

INORGANICS METHOD BLANK DATA STREETS PAGE 09/23/00

CLIMIT: THU-RAMFORD B99-042

RECEA LOT #: 0007L961

WORK ORDER: 16985-001-001-9999-00

					WELCHT.THA	DITIGITION
SAMPLE	SITE ID	AMALTTE	RESULT	CHITS	Pinil	PACTOR
******	*************		*******		****	****
PLANK!	9911478-WD1	Arsenic, Total	0,34 u	160/X/S	0.34	1.0
		Chromium, Total	0.13	164/164	0.09	1.0
		Lead, Total	0.47	100/103	0.21	1.0

INCHANAICS ACCURACY REPORT 08/23/00

			derit & 6	TATELLET	STATE		MOLEGIE
SAMPLE	GI STIR	NICK THE WALL	ATACACTE	XXSULT	AMOUNT	VANCOV	Factor (SPR)
		***************************************	*****		*******		
1001	B0Y243	Armenia, Total	181	3.4	ĭ	96.2	1.0
		Chromium, Total	29.4	•	18.4	106.0	1.0
		Lead, Total	90.	5.6	46.1	46.1 98.0	1.0

Recra LabBet - Lionville

INORGANICS PRECISION REPORT 08/23/00

CLIENT: THU-HAMFORD B99-042

RECEA LOT #: 0007L961

WORK GROWN: 10905-001-001-9999-00

			THITTAL			DIFOLION
Sample	SITE ID	ANALYTE	PESULT	replicate	13D .	Pactor (Rep)
	**************		*****	*******	*****	2252247722
-001REP	BOYR43	Arsenic, Total	3.4	3.0	12.5	1.6
		Chromium, Total	9.9 .	9.3	6.2	1.0
		Lead, Total	5.6	5.6	0.00	1.0

Page: 3 of 3

OCT 25 '00 12:41PM BHI S&D MANAGEMENT 509 372 9487

P.3/3

Duncan, Jeanette M

From: Sent:

Routt, Tina/RLO [troutt@ch2m.com] Thursday, October 12, 2000 7:48 AM Duncan, Jeanette/RLO-HAN

To:

Subject:

Review of Validation for H0924 (100-H-17)

Jeanette -

I've reviewed the validation results for H0924. I agree with most of what he says, but have the following changes:

Radiochemistry: Page 3, Detection Levels - cobait-60, MDAs are not greater than TDLs in samples BOYR50 and BOYR51 as he says. All of his other MDA/TDL statements are correct. I would also add that Pu-239/240 has MDA>TDL in samples BOYR43 and BOYR51, and U-238 (non-GEA, U-Iso) has MDA>TDL in sample B0YR51.

Compe

Inorganics: No changes.

Tina Routt CH2M Hill Richland Office troutt@ch2m.com (509) 375-3444, ext. 211 (509) 375-5566 fax

per

Duncan, Jeanette M

From:

Duncan, Jeanette M

Sent:

Thursday, October 26, 2000 3:35 PM

To:

'bchristian@techlawinc.com'

Subject:

Validation Review Comments for H0950, H0943, H0958 & H0933

Bruce,

H0924 (100-H-17) - to respond back to your e:mail on the 100-H-17 (H0924) - this is the one that was so hosed up with the inorganic pages in the rad - that I will need to get a full new copy of this. I do not want you to send this yet - I have an OK from Rich and Claude that your comment incorporation was fine - but Tina is not in today so I do not know if all is well with her. So, hold off until I hear from Tina.

H0950 (100-H-21) - just sent you an 8 page efax that included review comments for this validation package. Please incorporate comments. Also - on this one - please check the title - you have 116-H-3 on both the chem and rad. Please change to 100-H-21 (Pipeline Deep Zone).

H0943 (116-H-3) - this is also in the 8 page efax that we sent this afternoon.

H0958 (105F/DR) - this is also in the 8 page efax that we sent this afternoon.

Please send your page changes to the review comments electronically (or via fax). If there are massive changes (like Grp 3 Small Pipelines) send the whole tamale.

Thanks for your support.

Jeanette

Review Comment Record (RCR)			₹)		l. Date 10/25/00	2. Review No. QA-0044	
			·		3. Project 100-H	4. Page Page 1 of 1	
	5. Document Number(s)/Title(s) 6. Program/Project/ Building Number Claude S 100-H Areas - Full Protocol, Waste Sites 100-H-17				8. Organization/Group Quality Program	9. Location/P 372-9208	hone
_	eroent Submitted Approval: pasization adeonger (Optional)	Deta	comment dispositive of Co		11. CLOSSED 11/01/00 Defe:	Reviewer/Point of Cost	
12. Item	13. Comment(s)/Discrepancy(s) (Procomment and detailed recommendation resolve the discrepancy/problem indi-	ovide technical justification for the on of the action required to correct/	14.	15. Disposi	ition (Provide justification if N		16. Status
ı	Radiochemistry: Page 003, Detection Deficiencies Pu-238 and Pu-239/240 B0YR43 and B0YR51. Also U-235 B0YR50 and B0YR51. For Co-60, a not be listed.	needs to be added to the list for sum (gea) needs to be added for samples	·	Cen	rest Kr		
2	Inorganic: Ok No Comments.						
3	·						
4					- <u> </u>	····	
5							

Powered by SaFax.com

Page: 2 of 3

OCT 25 '00 12:41PM BHI S&D MANAGEMENT 509 372 9487

P.2/3

Duncan, Jeanette M

From:

Weiss, Richard L

Sent: To:

Thursday, October 12, 2000 3:07 PM Duncan, Jeanette M

Subject:

Review of Validation Package for H0-924

Jeanette,

The errors noted by Tina Routt in the rad package MDA section need to be fixed. In addition, I've found the following additional errors: U-235 (aspec)- all samples exceeded MDA goals. U-238 (aspec) - MDA goal missed for B0YR51. U-233/234 (aspec) - MDA goal missed for B0YR51. Pu-238 (aspec) - MDA goals missed for B0YR43 and B0YR51, U-235 (gea) - All samples missed MDA goals except B0YR49 and B0YR63.

Am-241 in the MDA sections should be identified as AM-241 (ges).

No comments on the inorganic package.

Rich

10/23/00

Ct-23-00 09:42P RB Christian

BHI Sample Management Phone: (509) 372-9346 FAX: (509) 372-9487

in state in the succession of the same

To: Claude Stacey	Fax: 372-9447
From: Jeanette Dunean	Date: 10/24/00
Re:	Pages: 4
cc:	
Quick Turn / Priority Data	□ Final Data Package

H0934 (100-H-17) Replacement pages fore Rad validation.

Thermo Retec W.O. No. R0-07-125-7445 Bechtel Hanford Inc. SDG H0924

Case Narrative

Page 1 of 1

1.0 GENERAL

Bechtel Hanford Inc. (BHI) Sample Delivery Group H0924 was composed of ten solid (soil) samples designated under SAF No. B99-042 with a Project Designation of: 100 H Area – Full Protocol.

The samples were received as stated on the Chain-of-Custody documents. Any discrepancies are noted on the Thermo Retec Sample Receipt Checklist. The results were transmitted to BHI via e-Fax on August 14, 30, and September 5, 2000.

2.0 ANALYSIS NOTES

- 2.1 Total Strontium Analyses
 - No problems were encountered during the course of the analyses.
- 2.2 Isotopic Uranium Analyses
 - isotopic Uranium was requested by BHI on August 17, 2000.
 - No problems were encountered during the course of the analyses.
- 2.3 Isotopic Plutonium Analyses
 - isotopic Plutonium was requested by BHI on August 17, 2000.
 - No problems were encountered during the course of the analyses.
- 2.4 Gamma Spectroscopy Analyses
 - No problems were encountered during the course of the analyses.

This page intentionally left blank

This page intentionally left blank.

***************************************	••••••	***************************************	•••••		MANAGEMENT 50		
HE FOLL	OWING FILE(S)) ERASED					
ILE FI	_E TYPE	OPTION	TEL NO.		PAGE	RESULT	
126 ME	MORY TX		3729447		04/04	1 OK	
							•
				•			
			•				
	4	•					
ERROR	S	E FAIL 2) BUSY	•		O FACSIMILE (1	
ERROR	S		•	4) N	O FACSIMILE (1	
ERROR	S		3) NO ANSWER	3 4) N BHI Sam Phone: (5	O FACSIMILE O	1	
ERROR	S		3) NO ANSWER	3 4) N BHI Sam Phone: (5	O FACSIMILE O	1	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	BHI Sam Phone: (5 FAX: (50	D FACSIMILE (ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN		3) NO ANSWER	BHI Sam Phone: (5 FAX: (50	O FACSIMILE O	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	BHI Sam Phone: (5 FAX: (50	D FACSIMILE (ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	BHI Sam Phone: (5 FAX: (50	D FACSIMILE (ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	HI Sam Phone: (5 FAX: (50	ple Management 609) 372-9346 99) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	4) N BHI Sam Phone: (5) FAX: (50)	ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	4) N BHI Sam Phone: (5) FAX: (50)	ple Management 609) 372-9346 99) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN	E FAIL 2) BUSY	3) NO ANSWER	4) N BHI Sam Phone: (5) FAX: (50)	ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	S NG UP OR LIN To: From:	E FAIL 2) BUSY	3) NO ANSWER	4) N BHI Sam Phone: (5) FAX: (50)	ple Management 509) 372-9346 19) 372-9487	CONNECTION	
ERROR	To: CE:	E FAIL 2) BUSY	3) NO ANSWER	4) N BHI Sam Phone: (5) FAX: (50)	ple Management (509) 372-9346 (59) 372-9487	CONNECTION	

H0934 (100-H-17) Replacement pages fore Rad

Duncan, Jeanette M

From: Sent: Routt, Tina/RLO [troutt@ch2m.com] Thursday, October 26, 2000 3:28 PM

To:

Duncan, Jeanette M

Subject:

RE: Validation Review Comments - 100-H-17

Jeanette -

Since I don't know what the comments were and I didn't have any problems with the first one, I don't know how to review the new comments. I think most of the comments were beyond my technical review of the document in the first place, so no comment.

Tina

----Original Message---From: Duncan, Jeanette M [mailto:JMDuncan@mail.bhi-erc.com]
Sent: October 26, 2000 11:06 AM
To: Stacey, Claude; Routt, Tina/RLO
Subject: FW: Validation Review Comments - 100-H-17

Claude & Tina,

Please review the attached page changes to the 100-H-17 Validation Report (H0924) - the validator has dispositioned the review comments. Rich has already reviewed these and is happy with the changes. Please let me know if you have any problems with the validator's changes.

Oh and just as a heads up - in order to open this file I had to go into Word and then open.

Jeanette

----Original Message----From: Christian, Bruce [mailto:BCHRISTIAN@TechLawInc.com]
Sent: Wednesday, October 25, 2000 9:47 PM
To: 'Duncan, Jeanette M '
Subject: RE: Validation Review Comments - 100-H-17

Will this do or do you need a hard copy.

----Original Message---From: Duncan, Jeanette M
To: 'bchristian@techlawinc.com'
Sent: 10/25/00 4:50 PM
Subject: Validation Review Comments - 100-H-17

Bruce,

Just efaxed you the validation review comments for H0924 (100-H-17). Needless to say the client has been as patient as possible - and this is the one that both Tina and Rich have substantial input - please please please get to this one as soon as possible. Thanks.

Jeanette

	Review Com		1. Date 10/25/00	2. Review No. QA-0044				
		- 1 A A - 2 - 4 A			3. Project 100-H	4	Page 1 of 1	
SDG N	ocument Number(s)/Title(s) o. H0924 ment Submittal Approval:	6. Program/Project/ Building Number 100-H Areas - Full Protocol, Waste Sites 100-H-17	7. Reviewer Claude Sta	cey	8. Organization/Gro Quality Program	oup	9. Location/Phone 372-9208	
Organization Manager (Optional) Reviewer/F				ntact	Date		riewer/Point of Contac	et .
12. Item	13. Comment(s)/Discrepancy(s) (Pr comment and detailed recommendat resolve the discrepancy/problem ind	rovide technical justification for the tion of the action required to correct/	hor/Originator 14. Hold Point	15. Dis	position (Provide justification		hor/Originator pted.)	16. Status
1	B0YR43 and B0YR51. Also U-235	on Levels and Page 004, Minor 0 needs to be added to the list for sam (gea) needs to be added for samples samples B0YR50 and B0YR51 shoul						
2	Inorganic: Ok No Comments.							
3					Company of the Compan			
4								
5								

						************			*********	••••••		509 3 ((OTUA	••••••
	THE FILE 043	FILE	ING FILE(TYPE RY TX	(S) ERA	SED OPTI	:ON		TEL 120	NO. 3723894	14	PAG Ø3/		ESULT	•
·	·													
t			:											e [*]
									· ·					
		•												
								*.						
Review No.	QA-0044	Page of 1	9. Location/Phone 372-9208			eviewer/Point of Contact		cepted.) Status						
1. Date 2. Review No.	0	ř	8. Organization/Group 9. Location/Phone Quality Program 372-9208		II. CLOSED	Reviewer/Point of Contact Date	AuthorOriginator	16. 15. Disposition (Provide justification if NOT accepted.) Status						

Duncan, Jeanette M

From:

Weiss, Richard L

Sent:

Thursday, October 12, 2000 3:07 PM

To:

Subject:

Duncan, Jeanette M Review of Validation Package for H0-924

Jeanette,

The errors noted by Tina Routt in the rad package MDA section need to be fixed. In addition, I've found the following additional errors: U-235 (aspec)- all samples exceeded MDA goals. U-238 (aspec) - MDA goal missed for B0YR51. U-233/234 (apsec) - MDA goal missed for B0YR51. Pu-238 (aspec) - MDA goals missed for B0YR43 and B0YR51. U-235 (gea) - All samples missed MDA goals except B0YR49 and B0YR53.

OK RLV 1026-00

Am-241 in the MDA sections should be identified as AM-241 (gea).

No comments on the Inorganic package.

Rich

Duncan, Jeanette M

From: Sent: Routt, Tina/RLO [troutt@ch2m.com] Thursday, October 12, 2000 7:48 AM Duncan, Jeanette/RLO-HAN

To: Subject:

Review of Validation for H0924 (100-H-17)

Jeanette -

I've reviewed the validation results for H0924. I agree with most of what he says, but have the following changes:

Radiochemistry: Page 3, Detection Levels - cobalt-60, MDAs are not greater than TDLs in samples B0YR50 and B0YR51 as he says. All of his other MDA/TDL statements are correct. I would also add that Pu-239/240 has MDA>TDL in samples B0YR43 and B0YR51, and U-238 (non-GEA, U-Iso) has MDA>TDL in sample B0YR51.

Inorganics: No changes.

Tina Routt CH2M Hill Richland Office troutt@ch2m.com (509) 375-3444, ext. 211 (509) 375-5566 fax Date:

6 October 2000

To:

Bechtel Hanford, Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100-H Areas - Full Protocol - Waste Site 100-H-17

Subject: Radiochemistry - Data Package No. H0924-TR (SDG No. H0924)

INTRODUCTION

This memo presents the results of data validation on Summary Data Package No. H0924-TR which was prepared by ThermoRetec (TR). A list of samples validated along with the analyses reported and the requested analytes is provided in the following table.

Sample ID	Sample Date	Midb	Validation	Analysis
BOYR43	7/20/00	Soil	С	See note 1
BOYR44	7/20/00	Soil	С	See note 1
BOYR45	7/20/00	Soil	С	See note 1
BOYR46	7/20/00	Soil	С	See note 1
BOYR47	7/20/00	Soil	С	See note 1
BOYR48	7/20/00	Soil	С	See note 1
BOYR49	7/20/00	Soil	С	See note 1
BOYR50	7/20/00	Soil	С	See note 1
BOYR51	7/20/00	Soil	С	See note 1
BOYR53	7/20/00	Soil	С	See note 1

^{1 -} Gamma spectroscopy; alpha spectroscopy (isotopic plutonium); total strontium.

Data validation was conducted in accordance with the BHI validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL May 1998). Appendices 1 through 5 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

· Holding Times

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for radiochemical analysis is 6 months.

All holding times were acceptable.

Blanks

Laboratory Blanks

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination. If blank analysis results indicate the presence of an analyte above the MDA, the following qualifiers are applied: All positive sample results less than five times the highest blank concentration are qualified as estimates and flagged "J"; sample results below the MDA are qualified as undetected and flagged "U"; sample results above the MDA and greater than five times the highest blank concentration are not qualified.

All other blank results were acceptable.

Equipment Blank

One equipment blank (BOYR53) was submitted for analysis. Uranium-233, uranium-238(aspec), potassium-40, radium-226, radium-228, thorium-228 and thorium-232 were detected in the equipment blank. Under the BHI statement of work, no qualification is required.

Accuracy

Accuracy is evaluated by analyzing distilled water or field samples spiked with known amounts of radionuclides. The sample activity as determined by analysis is compared to the known activity to assess accuracy. The acceptable laboratory control sample and matrix spike recovery range is either 70-130% or ±3 sigma. In addition, samples may be spiked with a radiochemical tracer to assist in isolating the radioisotope of interest with the yield of the tracer being used in calculating sample activity. The acceptable range for tracer recovery is 20% to 105%. Spike sample results outside the above ranges result in associated sample results being qualified as estimates, rejected, or not qualified, depending on the activity of the individual sample.

Due to a radiochemical yield of 108%, the detected isotopic uranium results in sample BOYR46 were qualified as estimates and flagged "J".

All other accuracy results were acceptable.

Precision

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. Precision may also be assessed using unspiked duplicate sample analyses. If both sample and replicate activities are greater than five times the CRDL and the RPD is less than 30 percent, the results are acceptable. If either activities are less then five times the CRDL, a control limit of less than or equal to two times the CRDL is used for soil samples and less than or equal to the CRDL for water samples. If either the original or replicate value is below the CRDL, the applicable control limits are less than or equal to the CRDL for water samples and less than or equal to two times the CRDL for soil samples. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

All duplicate results were acceptable.

Field Duplicates

One set of field duplicates (BOYR46/BOYR51) were submitted for analysis. The results were compared using the same criteria as for a laboratory duplicate. All field duplicate results were acceptable.

Detection Levels

Reported analytical detection levels for undetected analytes are compared against the 100 Area Remedial Action Sampling and Analysis Plan target detection limits (TDLs) or the contract specified MDA if no TDL was specified, to ensure that laboratory detection levels meet the required criteria. The following analytes were reported above their TDL: Uranium-238(gea) in all samples; uranium-235(aspec) in all samples; americium-241(gea) in all samples except BOYR45 and BOYR53; europium-155 in all samples except BOYR53; uranium-235(gea) in samples BOYR43, BOYR44, BOYR45, BOYR46, BOYR47, BOYR48, BOYR50 and BOYR51; europium-154 in samples BOYR44, BOYR45, BOYR45, BOYR46, BOYR47, BOYR48 and BOYR51; europium-152 in samples BOYR47 and BOYR48; cobalt-60 in samples BOYR45 and BOYR47; uranium-238(aspec) and uranium-233(aspec) in sample BOYR51; plutonium-238 and plutonium-239/240 in samples BOYR43 and BOYR51; cesium-137 in samples BOYR47 and BOYR51. Under the BHI statement of work, no qualification is required. All other reported

laboratory MDAs were at or below the analyte-specific TDL or contract specified MDA.

Completeness

Data Package No. H0924 (SDG No. H0924) was submitted for validation and verified for completeness. The completion rate was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

Due to a radiochemical yield of 108%, the detected isotopic uranium results in sample BOYR46 were qualified as estimates and flagged "J". Data flagged "J" is an estimate, but under the BHI validation SOW, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

The following analytes were reported above their TDL: Uranium-238(gea) in all samples; uranium-235(aspec) in all samples; americium-241(gea) in all samples except BOYR45 and BOYR53; europium-155 in all samples except BOYR53; uranium-235(gea) in samples BOYR43, BOYR44, BOYR45, BOYR46, BOYR47, BOYR48, BOYR50 and BOYR51; europium-154 in samples BOYR44, BOYR45, BOYR46, BOYR47, BOYR48 and BOYR51; europium-152 in samples BOYR47 and BOYR48; cobalt-60 in samples BOYR45 and BOYR47; uranium-238(aspec) and uranium-233(aspec) in sample BOYR51; plutonium-238 and plutonium-239/240 in samples BOYR43 and BOYR51; cesium-137 in samples BOYR47 and BOYR51. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, *Validation Statement of Work*, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 1, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, May 1998.

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI statement of work are as follows:

- Indicates the compound or analyte was analyzed for and not detected above the minimum detectable activity (MDA) in the sample. The value reported is the sample result corrected for sample dilution and moisture content by the laboratory. The data is usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected at concentrations above the minimum detectable activity (MDA) in the sample. Due to a QC deficiency identified during the data validation, the associated quantitation limit is an estimate, but is usable for decision making purposes.
- Indicates the compound or analyte was analyzed for and detected. Due to a QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified QC deficiency.

Appendix 2
Summary of Data Qualification

Qualified Data Summary and Annotated Laboratory Reports

Laboratory Narrative and Chain-of-Custody Documentation

Data Validation Supporting Documentation